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Aim: To unveil how the dynamical features of the fractal cactus network are related to its geometry.

The construction procedure of the fractal cactus network

Fractal dimension  𝑑𝑓=
ln 3

ln 2
= 1.58496…

Spectral dimension  𝑑𝑠 =
2 ln 3

ln 6
= 1.22692…

The first three generations of the fractal cactus have been experimentally synthesized. 
These are the branched [4] triangulane and the branched [n] triangulanes (BTs). 



Generalized Gaussian Structures (GGS) model 

• extension of the Rouse model to incorporate polymers with arbitrary topologies
• dynamical quantities can be determine based on the eigenvalues
• does not account for excluded volume effects and entanglement constraints

A GGS is modelled as a structure consisting of N beads (monomers) connected to each other by 
elastic (entropic) springs.

The conformation of a polymer is described by the set of position vectors 𝑹𝑛 ,  where
𝑹𝑛 𝑡 = (𝑋𝑛 𝑡 , 𝑌𝑛 𝑡 , 𝑍𝑛 𝑡 ) is the position vector of the nth monomer at time t.

Dynamics of the polymer is described by the set of N linearly independent Langevin equations.
For a particular monomer i it reads

𝜁
𝜕𝑹𝑖(𝑡)
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𝑁

𝑨𝑹𝑗 𝑡 = 𝒇𝑖 𝑡 + 𝑭𝑖(𝑡)

where, 𝜁 = 6𝜋𝜌𝑎 is the friction constant, 𝐾 = 3𝑘𝐵𝑇/𝑙
2 is the elasticity constant, 𝑓𝑖 are random forces, 

and 𝐹𝑖 denotes any external force that acts on a monomer



The topology of the polymer is accounted by the connectivity matrix 𝐀 = (𝐴𝑖𝑗)

𝐴𝑖𝑗 =  
−1 if 𝑖 and 𝑗 are connected with a bond
0 otherwise

𝐴𝑖𝑖 equals the number of bonds emanating from the bead 𝑖

The system of the Langevin equations can be solved by diagonalizing the connectivity matrix

The average monomer displacement (stretching of the polymer under external force)
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In the GGS model the mechanical relaxation moduli are given by

𝐺′ 𝜔 = 𝐶/𝑁 
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The iterative method for determining the eigenvalues of the connectivity matrix

• The calculation of the dynamical quantities is straightforward only for small structures where the 
numerical diagonalization is easy to perform.

• The topological details of the structure are revealed only in the intermediate time/frequency region 
which is bounded by large crossover domains.

• For small structures, the crossover domains blurred up the intermediate domain and no information can 
be extracted.

• For very large matrices the numerical diagonalizations are practically impossible to perform.
• To overcome the problem we developed an iterative procedure. 

Fractal cactus network rescales under two specific real-space transformations

The result of the specific real-space transformations is the following relation

𝜆±
(𝑔)

=
6 ± 36 − 4 ∙ 𝜆(𝑔−1)

2

The degeneracy of the eigenvalues

Δ𝑔 = 1 + 3𝑔−1



Rouse dynamics: averaged monomer displacement

Fractal cactus networks with sizes ranging from 𝑁 = 36 to 𝑁 = 318 monomers. 

At very short times: ≪ 𝑌 𝑡 ≫ ~ 𝑡; only one monomer is moving
At very long times: ≪ 𝑌 𝑡 ≫ ~ 𝑡/𝑁; the whole structure drifts
In the intermediate time domain: ≪ 𝑌 𝑡 ≫ ~ 𝑡𝛾

For the largest fractal considered, the power-law exponent (slope of the curve) 𝛾 = 0.389

From the comparison with the theoretical value 𝛾𝑡 = 1 −
𝑑𝑠

2
= 0.38685 results a very good agreement.



Rouse dynamics: mechanical relaxation moduli

Fractal cactus networks with sizes ranging from 𝑁 = 36 to 𝑁 = 318 monomers. 

At very small frequencies: 𝐺′(𝜔)~𝜔2 and 𝐺′′ 𝜔 ~𝜔; represents mechanical response of the whole network
At very large frequencies: 𝐺′(𝜔)~𝜔0 and 𝐺′′(𝜔)~𝜔−1; signifies single-monomer mechanical response

In the intermediate frequency domain: 𝐺′(𝜔)~𝜔𝛼 and 𝐺′′(𝜔)~𝜔𝛽

Going from 𝑁 = 36 to 𝑁 = 318 we have a change in the minimal slope from 𝛼 = 0.662 to 𝛼 = 0.614
and from 𝛽 = 0.575 to 𝛽 = 0.605.

From the comparison with the theoretical value 
𝑑𝑠

2
= 0.61315 results again a very good agreement.

We infer that the sole parameter of importance for the relaxation dynamics is the spectral dimension. 



Summary and conclusions

• In this work we have analyzed the Rouse-type relaxation dynamics of a fractal cactus polymer network

• We have developed an iterative procedure for the determination of the whole eigenvalue spectrum of 
the connectivity matrix

• The general picture that emerges in the Rouse-type approach is that the dynamical quantities obey 
power law behavior and the sole fractal parameter of importance for the relaxation dynamics is the 
spectral dimension
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